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Note 

Use of Monte Carlo Techniques for Complex 
Angular Momentum Algebra Calculations* 

INTRODUCTION 

In the last two decades very sophisticated methods have been proposed [ 1 ] for 
the treatment of “realistic” models in nuclear structure and reaction theory. A vex- 
ing difficulty of these calculations can be the ever-increasing complexity of the 
angular momentum algebra required when, e.g., n particles-n holes (n > 2) matrix 
elements need to be evaluated. To obviate the analytical complexity of these 
calculations and, at the same time, to reduce the probability of making errors, 
several graphical methods have been proposed [2]. The “switchyard” or 
“switchboard” technique originally proposed by Danos [3], is, in our opinion, par- 
ticularly convenient, because of its simplicity and straightforwardness. In fact, it 
reduces a matrix element to a set of lines, which can be interchanged, as necessary 
for a numerical evaluation, through the use of only one tool: the basic 9-j recou- 
pling box. Complex angular momentum algebra calculations are thus reduced to 
the simple and even amusing task of finding the “best” graph and reading from it 
the corresponding analytical formula. 

A difficulty, however, persists: a large number of intermediate angular momenta 
are often generated, upon which summation is implied. Consequently, the required 
computer time can easily escalate to unmanageable amounts, up to many years of 
computer time, even with the fastest computers presently available. The purpose of 
the present paper is to show that complex matrix elements, which would require 
years of computer time to be computed exactly, can be evaluated in a very 
reasonable computer time through proper use of the Monte Carlo method, with an 
expected error of about 1 %, which usually can be considered satisfactory. 

Since the switchyard technique is explained in detail elsewhere [3-61, we will 
simply illustrate it with an example in the next section. In the following section we 
will describe our Monte Carlo calculation and present our results. 

THE SWITCHYARD TECHNIQUE 

To illustrate with an example the switchyard technique, we present in Fig. 1 a 
graph representing an identity, which is one of 9 orthogonality relationships, which 
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can be obtained from Fig. 16 of Ref. 3. In Fig. 1 each horizontal line represents an 
angular momentum (a.m.). The 8 a.m. a, b ,..., h are initially coupled to the a.m. 
p, q, r, S, which in turn are coupled to t, U, and v. The a.m. couplings are represented 
with curved vertical lines. Therefore in its initial stage (reading from left to right, 
before the 9-j boxes) the graph represents the following combination of a.m.: 

[[[axb][P’x [cx~][~‘][“x [[exf][“x [gxh][“‘][“‘][“‘. (1) 

The 8 a.m. are subsequently interchanged through the nine “9-j boxes.” Note that 
every 9-j box interchanges the second with the third a.m., leaving the first and 
fourth a.m. unaltered. This is the only rule of the game, since any operation consists 
exclusively of 9-i boxes operating on 4 adjacent a.m., with possibly one mock zero 
a.m. (6-j symbols) or two mock zero a.m. (3-j symbols). This accounts for the sim- 
plicity of the method. 

The 9-j boxes represent square 9-j symbols. E.g., the first box at top on the right 
represents abp [ 1 cdq 

A B t 

where the couplings are read horizontally before the box and vertically after the 
box. Square 9-j symbols are related to ordinary 9-j symbols by 

where t = J2c + 1. 

FIG. 1. Graph representing the identity of Eq. 3. Horizontal lines represent angular momenta and 
the recoupling boxes represent square 9-j symbols. 
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After all the recouplings by the nine 9-j boxes, we return (right side of Fig. 1) to 
the original 8 a.m. in the same order and with the same couplings (Eq. 1). 
Therefore, 

DEF 
GHP 
QRS 

(3) 

where we have summed over all the intermediate a.m., which are generated in the 
recouplings. If one of the final a.m. had a different value (say a’ # a), the value of 
the sum of 9-j products would be zero (orthogonality). 

MONTE CARLO CALCULATION 

In Eq. 3 all the a.m. represented by small letters (a, b,..., u) can be chosen 
arbitrarily. Of course p, q, r, s, t, U, and u must satisfy the proper triangular con- 
ditions, e.g., la - bl < p < a + b. Also the 12 intermediate a.m. A, B ,..., S must satisfy 
the corresponding triangular conditions. Since [7] 

a b c 

i I d e f =I (2k+ 1) W(aidh; kg) W(bjhd; ke) W(aibf; kc) (4) 
ghi k 

in order to verify Eq. 3, one must evaluate a sum over 21 indexes (A, B,..., S plus 
nine k’s) of terms each consisting of 27 Racah coefficients. Even assuming that each 
Racah coefficient could be calculated in only 10e4 s, the total computer time would 
be of the order of lo’* s (i.e., many thousand years), if the choice of the prefixed 
a.m. a, b ,..., u is not trivial. 

In order to demonstrate the usefulness of the Monte Carlo method in a.m. 
algebra calculations, we have evaluated the left side of Eq. 3 for N choices of ran- 
dom values of the intermediate a.m., each time multiplying for the corresponding 
weight factor and averaging. As an example, since the a.m. a and c are coupled to 
the intermediate a.m. A, we have each time chosen A at random between (a - cl 
and a + c with a weight factor a + c - la-cl + 1. To ascertain the validity of the 
method, we have performed our calculations for 10 different choices of the prefixed 
a.m. a, b ,..., v. 
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FIG. 2. Results of our Monte Carlo calculations for the best case (solid line) and worst case (dashed 
line) vs. N (number of terms) in multiples of 5000. 

Figure 2 shows the result of our calculations for the best (most “lucky”) case 
(solid line) and for the worst case (dashed line). The exact result (1) is also shown 
as a straight line. For convenience of representation, we have taken N in multiples 
of 5000 up to 200,000 (40 x 5000). It is clear from Fig. 1 that, after some (possibly 
wild) oscillations above or below the exact value, the averaged result stabilizes itself 
around 1 with an error that, for N= 200,000 is of the order of 1%. Better results 
can be obtained, of course, with more terms. This is not very economical, however, 
since the accuracy is proportional to N1’*, i.e., to obtain an expected accuracy of 
about 0.1% one would need to include at least 2 x 10’ terms. We have also found 
that, at least in our limited sample, the accuracy does not depend appreciably on 
the choice of the prefixed a.m. a, b ,..., u, which are reported for completeness in 
Table I for the two cases of Fig. 2. 

The CPU time required for each complete calculation (N= 200,000) was about 
8 h in our DEC-10 computer. We did not use, however, any of the usual computer 
tricks (e.g., tabulating the most commonly used Racah coefficients, so that they do 
not need to be computed each time, etc.). With a faster machine and/or a more 
efficient code we could have easily gained a factor of 100 or more in the computer 

TABLE I 

Value of the Prefixed Angular Momenta Chosen 
for the Best Case and Worst Case (See Fig. 2) 

a b c d efghpqrstuv 

Best Case 5 114 12 2 1.5 4 116 2 5 

Worst case 134131122331334 
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time required for each calculation. Proper use of well-known statistical techniques 
like importance sampling related, for example, to the intermediate angular 
momenta of the Racah coefficients would further decrease the statistical error. 

CONCLUSION 

We have demonstrated the usefulness and reliability of the Monte Carlo method 
in angular momentum algebra calculations, using an identity which can be easily 
proved with Danos’ switchyard technique. We believe that the application of the 
switchyard technique with a Monte Carlo numerical evaluation of the matrix 
elements can be very fruitful in future calculations of nuclear structure and reaction 
theory, in view of the increasing complexity of the nuclear models proposed and of 
the sophisticated methods which already exist for their treatment. 
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